Linear-Time Parameterized Algorithms via Skew-Symmetric Multicuts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Solution of Skew-Symmetric Linear Systems

We offer a systematic study of Krylov subspace methods for solving skew-symmetric linear systems. For the method of conjugate gradients we derive a backward stable block decomposition of skew-symmetric tridiagonal matrices and set search directions that satisfy a special relationship, which we call skew-A-conjugacy. Imposing Galerkin conditions, the resulting scheme is equivalent to the CGNE al...

متن کامل

Matroid Matching Via Mixed Skew-Symmetric Matrices

Tutte associates a V by V skew-symmetric matrix T , having indeterminate entries, with a graph G=(V,E). This matrix, called the Tutte matrix, has rank exactly twice the size of a maximum cardinality matching of G. Thus, to find the size of a maximum matching it suffices to compute the rank of T . We consider the more general problem of computing the rank of T +K where K is a real V by V skew-sy...

متن کامل

Skew Symmetric Bundle Maps on Space-time

We study the “Lie Algebra” of the group of Gauge Transformations of Space-time. We obtain topological invariants arising from this Lie Algebra. Our methods give us fresh mathematical points of view on Lorentz Transformations, orientation conventions, the Doppler shift, Pauli matrices, Electro-Magnetic Duality Rotation, Poynting vectors, and the Energy Momentum Tensor T .

متن کامل

Linear-Time FPT Algorithms via Network Flow

In the area of parameterized complexity, to cope with NP-Hard problems, we introduce a parameter k besides the input size n, and we aim to design algorithms (called FPT algorithms) that run in O(f(k)n) time for some function f(k) and constant d. Though FPT algorithms have been successfully designed for many problems, typically they are not sufficiently fast because of huge f(k) and d. In this p...

متن کامل

Higher-order segmentation via multicuts

Multicuts enable to conveniently represent discrete graphical models for unsupervised and supervised image segmentation, in the case of local energy functions that exhibit symmetries. The basic Pottsmodel and natural extensions thereof to higher-order models provide a prominent class of such objectives, that cover a broad range of segmentation problems relevant to image analysis and computer vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Algorithms

سال: 2017

ISSN: 1549-6325,1549-6333

DOI: 10.1145/3128600